令和2年度 京都大学地球物理学教室同窓会「京大知球会」 講演要旨 GNSS データを用いた短期的スロースリップイベントの検出手法の開発と 南海沈み込み帯への適用

測地学及び地殻変動論分科 修士課程2年 岡田悠太郎 (OKADA, Yutaro)

1. 概要

スロー地震は通常の地震と比べゆっくりと断層がすべる現象であり、主に海溝型巨大地震の破壊 域の深部延長で発生する(e.g., Obara and Kato, 2016). 西南日本の南海沈み込み帯では, 数日 間から数週間継続するスロー地震の一種である短期的スロースリップイベント(以下, S-SSE)が, 傾斜計や Global Navigation Satellite System(以下, GNSS)などを用いて観測されている(e.g., Sekine et al., 2010; Nishimura, 2014). 本研究では, 南海沈み込み帯で発生する S-SSE の継続期 間に着目する. 傾斜計を用いた研究において, 継続期間は同期する深部低周波微動の活動を基 に決定されてきた(e.g., Sekine et al., 2010). 一方で GNSS を用いた研究では, 座標時系列に記 録される S-SSE のシグナルが小さいため,継続期間は推定されてこなかった. そこで本研究では, GNSS データを用いた既存の S-SSE 検出手法(Nishimura et al., 2013; Rousset et al., 2017)を基 に、S-SSE の継続期間が推定可能である新検出手法を開発し、南海トラフ沿岸域の GNSS データ に適用した.

2. データと手法

本研究では南海トラフ沿岸域の GEONET 観測局 681 点,大学独自観測局 44 点, DGPS 局 8 点, IGS 局 1 点の RINEX データから, GIPSY/OASIS ver 6.4 の精密単独測位法により推定した日

131°E

座標値を解析に使用した(図 1). また, S-SSE の検出期間 は1997年2月1日から2020 年1月31日までの23年間と した.

本研究で開発した手法は, S-SSE の候補となる非定常変 位イベントの検出と,検出し たイベントの断層モデルと継 続期間の推定結果に閾値を 適用することで,非定常変位 イベントを S-SSE へ分類する という2 つの処理に大別され る. 初めに, 非定常イベントの 発生したおおよその日付を抽

図1 使用した観測点と仮定した小断層の分布. 橙色, 紺色, 水色, 紫色の菱形はそれぞれ GEONET 観測局,大学独自観測局, DGPS 局, IGS 局を示す. 緑色の四角は仮定した小断層の位置を示す.

出するために,121 日間の座標値と 33°N-S-SSE の変位を模したテンプレート の間の相関係数を,時間窓を動かし て全観測点の水平成分について計 算した. 続いて, 各観測点・成分ごと 32°N に算出した相関係数を加重平均す ることで、フィリピン海プレート境界面 上(Iwasaki et al., 2015)に仮定した 小断層(図1)ごとの相関係数を算出 31℃ した.加重平均の際の重みには、仮 定した小断層から期待される変位 (Okada, 1992)を用いた. この処理 によって、より大きな変位が期待され る観測点・成分を重視して検出を行 うことができる.この処理を全解析期 間において, 仮定した 429 個の小断 層(図1)について行った.最後に,算 出した小断層ごとの相関係数の値に 閾値を適用することで,非定常変位 イベントを検出した.

次に,非定常変位イベントに対 して半無限弾性体での矩形断層 モデル(Okada, 1992)のパラメー タを推定した(Matsu'ura & Hasegawa, 1987; Nishimura et al., 2013). その後, 推定した断層モ デルから期待される変位と観測座 標値のノイズレベルで重みづけし て, 各観測点・成分の 121 日間の 座標値を重合した(Rousset et al., 2017). 重合した時系列とテンプ レートの間の相関係数が最大とな る継続期間を,非定常イベントの 継続期間として採用する. 最後 に、断層モデルのすべり方向、レ イク角,カイ二乗の減少量と,継続

2010/01/26 Class1 Mw: 6.17 Duration: 14 days

図 2 検出された S-SSE の例. 桃色の矩形は S-SSE の断層 モデルを, 黒と青の矢印はそれぞれ観測変位と計算変位を 示す. また, 茶色の丸は RE の震央を, 橙色の丸の位置は VLFE の震央を, 橙色の丸の大きさは VLFE の発生個数をそ れぞれ示す.

図 3 平均すべり速度の空間分布. グリッドの色は平均すべり 速度の大きさを, 黒い破線はフィリピン海プレートの等深線 (Iwasaki et al., 2015)をそれぞれ示す.

期間推定の際に算出した相関係数に対し閾値を適用することで,非定常変位イベントが S-SSE かどうかを判定した. 更に, S-SSE に分類されたイベントに対して,ブートストラップ法を用いて継続期間の誤差を推定した.

3. 結果と考察

本研究では 23 年間で 280 個の S-SSE の検出に成功した. 検出された S-SSE の大部分は, 先行 研究(e.g., Sekine et al., 2010; Nishimura, 2014)と同じく, 固着域の深部延長に分布していた. 検 出された S-SSE の例として, 九州沖合で検出されたイベントを示す(図 2). このイベントは, 断層面 上でのすべりとの関連が示唆される繰り返し地震(Uchida et al., 2020)(以下, RE)やスロー地震の 一種である超低周波地震(Baba et al., 2020)(以下, VLFE)と時空間的に近接して発生していた. Uchida et al. (2020)は RE や VLFE の活動の活発化から, この期間における SSE の発生の可能性 を示唆したが, GNSS データを用いた先行研究ではこのイベントは検出されていなかった. 九州沖 合における S-SSE と RE, VLFE の同期現象は,本研究によってはじめて検出されたものである.

本研究では S-SSE のすべり量と継続期間を誤差を含めて網羅的に推定しているため,先行研究 では検討されていなかった南海沈み込み帯の S-SSE のすべり速度を議論することができる.そこで 最後に,継続期間が推定された S-SSE を用いて,累積すべり量,累積継続期間,累積すべり量を 累積継続期間で割った平均すべり速度をモンテカルロ的に計算し,各グリッドポイントでのこれらの 平均的な値と誤差を見積もった.計算された平均すべり速度の空間分布を図 3 に示す.算出され た平均すべり速度を比較した結果,四国西部における平均すべり速度は四国東部と比べ約 2 倍 速いことが明らかになった.また九州地方で発生する S-SSE の平均すべり速度は,他地域と比べ 小さい可能性が示唆された.更に誤差の範囲内ではあるが,伊勢湾を境に平均すべり速度が東西 で変化している可能性がある.本研究で明らかになった平均すべり速度は,海洋プレートが低角で 沈み込む地域で大きく,高角で沈み込む地域で小さいという大まかな傾向がみられ,沈み込むフィ リピン海プレートの幾何形状に関係している可能性があると考えられる.

謝辞

本研究では国土地理院 GEONET, 海上保安庁 DGPS 局, GPS 大学連合, 国際 GNSS 事業, 京都大学, 神戸大学, 高知大学, 九州大学から提供された GNSS RINEX データを使用した. 本研究 で用いたプレート境界モデル(Iwasaki et al., 2015)は, 国土地理院の"数値地図 250m メッシュ(標高)", 日本海洋データセンターによる 500m メッシュ海底地形データ(J-EGG500, http://www.jodc.go.jp/data_set/jodc/jegg_intro_j.html)及び Geographic Information Network of Alaska (アラスカ大学)の地形・水深データ(Lindquist et al., 2004)から作成したものである. 関係者 の皆様に感謝申し上げる.

引用文献

- Baba et al. (2020) Slow earthquakes illuminating interplate coupling heterogeneities in subduction zones. *Geophys. Res. Lett.*
- Iwasaki et al. (2015) Fundamental structure model of island arcs and subducted plates in and around Japan. 2015 Fall Meeting, American Geophysical Union.
- Lindquist et al. (2004) Global Topography and Bathymetry Grid Improves Research Efforts. *Eos Trans. AGU*
- Matsu'ura & Hasegawa (1987) A maximum likelihood approach tm nonlinear inversion under constrains. *Phys. Earth Planet. Inter.*
- Nishimura et al. (2013) Detection of short-term slow slip events along the Nankai Trough, southwest Japan, using GNSS data. J. Geophys. Res. Solid Earth
- Nishimura (2014) Short-term slow slip events along the Ryukyu Trench, southwestern Japan, observed by continuous GNSS. *Prog. Earth Planet. Sci.*

Obara & Kato (2016) Connecting slow earthquakes to huge earthquakes. Science

- Okada (1992) Internal deformation due to shear and tensile faults in a half-space. *Bull. Seismol. Soc. Am.*
- Rousset et al. (2017) A geodetic matched filter search for slow slip with application to the Mexico subduction zone. J. Geophys. Res. Solid Earth
- Sekine et al. (2010) Along-strike variations in short-term slow slip events in the southwest Japan subduction zone. J. Geophys. Res.
- Uchida et al. (2020) Migration of shallow and deep slow earthquakes toward the locked segment of the Nankai megathrust. *Earth Planet. Sci. Lett.*