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Speciality: physical oceanography and data assimilation

Research record:

-1st stage: Coastal oceanography; e.g., water exchange and mixing processes by tidal currents

=2nd stage: Western boundary currents; e.g., generation mechanisms of Kuroshio path
variation and associated water exchange

- 3rd stage: Deep convection by surface cooling; e.g., deep water formation process

" 4th stage: Inter-ocean processes; e.g., Indonesian throughflow (ITF): its seasonality,

transport process from Pacific to Indian Oceans, and
heat and mass balance in between Indonesian Seas

- 5th stage: Kuril Island , Okhotsk Sea, marginal sea physical processes:
e.g., internal wave dynamics and mixing, NPIW and mode-water formation,
new ventilation theory

*6th stage: Data assimilation; e.g., development of most innovative DA system , 4ADVAR CDA,

and its application to robust estimate and better prediction of important climate
variabilities

- 7th stage: El Nino, Monsoon, and PDO toward improved prediction
-8th stage: application and interdisciplinary work to, e,g,, fishery and coastal hazard prevention
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(k) ® U=UsCOS(Wt+P) (21, spatial changes of the phase lag of both components
91 '__. V=0.25COS(wt) are also rapid in the vicinity of the strait, especially
1 RY tha nhaca lno of tha 1 cammanan ok dnliac ~vras
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6 lunar hours between both ends of the strait. These
are important points in regard to the velocity field
of the M, current.

It is well known that the tidally-induced residual
current is induced in the neighborhood of a strait by
the nonlinear interaction of sinusoidal tidal current
(Tee, 1976; Owen, 1980). It is defined as the velocity
averaged over a cycle of the M; tide. Fig. 6 shows
the distribution of velocity vectors of the tidally-
induced Eulerian residual current obtained in this
model. The apparent tidally-induced Eulerian resid-
ual circulations are found near the strait. The cir-
culation in the outer basin is clockwise and that in
the inner basin counterciockwise. The maximum
velocity of the tidally-induced Eulerian current is
0.6 m s~

We calculate the trajectories of a number of
labeled particles in the above calculated velocity
field. The calculation is started at the time of a maxi-
mum inward current at the center of the strait and is
continued during a full cycle of the M, tide There-
fore, the labeled pamcles deployed in the strait at

- the initial time travel in both basins during one
tidal cycle.
5 o) 20 In order to clarify the roies of the M, and tidally-

1 K

Generation of _
Lagrange drift §

—
0 T4

FiG. 3. The horizontal distributions of the amplitude and the '
phase lag of an artificial velocity field (the left side) and the tra- ¥
jectories of two marked particles (A and B) during two tidal f
cycles (the right side). \\}H N

Eqgs. (1) and (2), and therefore when oniy these fac-

S (LT =TT (I

tors exist, a particle does not return to its initial
position after one tidal cycle.

Since in a coastal sea these two factors are deter- '
mined by friction and the rapid variation of the | J
coastal geometry, the drift of a water particle must
be much larger in the vicinity of a strait than in the (A)
central area of a basin; as a result water exchange —

will take place between the inner and outer basins. /
4. Results ‘ @ [)\
|
The last tidal cycle in which the tidal model settles ﬁ \

down to a stationary oscillation is used in the follow-

ing analysis and discussion. )

The amplitude and phase distributions of the u ‘—J \/\
and v components of the calculated M, current are

shown in Figs. 4 and 5, respectively. In the vicinity ‘ 1
of the strait the amplitudes of both components are

very large, sometimes over 2.5 m s™!, and in addi-

tion their spatial changes are very rapid. The co- (B)

amplitude lines of relatively small amplitude extend - Fig. 4. The calculated M, co-amplitude lines (cm s~1):
from the strait to both basins asymmetrically. The (A) u component and (B) v component. ‘
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Fii. 10. The estimate of the mean transport through the Kuril Straits induced by the K, tide.
Upward and downward arrows represent inflow and outflow, respectively.

focusing on the K| case, because the K, component dom-
inates the mean transport and because the formation
mechanism may be helpful in clarifying the cause for
the difference in mean transport between the diurnal
and semidiurnal tides. The vertical component of vor-
ticity @ is defined as the depth-averaged relative vor-

ticity
w = gl a—“ (8)

ax  dy

Figure 11 shows the Eulerian mean relative vorticity
over a cycle around the Kuril Straits. According to pre-
vious studies of tidal rectification (e.g., Robinson 1981),
the mean vorticity generally acquires negative values
on the sill top and positive values at the base of the sill,
which, in turn, produce a clockwise mean current along
the sill since mean currents are almost zero far away

from the sill. Such a pattern is clearly seen in shallow
straits (200~600 m depth). A close look at Fig. 11
shows that as the sill gets higher in the vicinity of the
islands, the magnitude of the negative mean vorticity
on the top of the sill becomes larger. Supposing mass
conservation of the along-sill mean currents, such vor-
ticity changes in shallow straits lead to clockwise mean
circulation on island scales, thus creating bidirectional
mean currents in shallow straits as is shown schemat-
ically in Fig. 12a.

In deep straits, on the other hand, the mean vorticity
distribution on the sill top has positive values near the
islands (except for thin viscous boundary layers closer
to islands). This vorticity pattern differs greatly from
that in shallow straits in spite of the presence of similar
bidirectional currents (Fig. 11). To investigate this prob-
lem, we direct our attention to Bussol Strait, where the
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FiG. 17. Same as Fig. 9 but for the 2.5 km % 2.5 km grid sizes
case and the contour unit of 0.8 Sv.

strophic balance. In fact, the presence of bidirectional
currents is also observed by geostrophic calculation in
Amchitka Strait (Reed 1990), which connects the Bering
Sea and the North Pacific and is located north of the
critical latitude for diurnal tides. This indicates the im-
portance of direct current measurements for the esti-
mation of water exchange between the two basins so
that barotropic mean flow induced by subinertial tides
can be precisely taken into account.

7. Summary

Our regional model has successfully reproduced the
observed barotropic K| tidal field in the Okhotsk Sea,
although the reliability of the calculated current field is
difficult to assess owing to the lack of current mea-
surements. Using the calculated tidal currents, the Eu-
lerian mean outflow from the Okhotsk Sea is estimated
to reach the significant value of 5.0 Sv for the K, tide,
the main part of which is conducted through the Bussol,
Kruzenshterna, and Chetverty Straits. In addition to the
K, tide, the O,, P,, M,, and §, tides induce Eulerian
mean exchanges estimated at 3.5, 1.0, 0.3, and 0.1 Sv,
respectively. These tidal exchanges are produced by bi-
directional mean currents in the straits, consistent with
the current structure observed in infrared images taken
by NOAA-12 and mentioned in the earlier work by Mo-
roshkin (1966) and Leonov (1960). Therefore, it is sug-
gested that tidal currents play an important role in water
exchange between the Okhotsk Sea and the North Pa-
cific, although confirmation of this prediction and im-
provements in accuracy await future observations.

We have shown that the mean currents are produced
through the effects of topographically trapped waves as
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Fici. 9. Schematic picture of the subduction process of the mixed layer water [after Marshall et
al. {1993)]. Note that when the subduction rate is estimated, water at any depth is assumed o
move with the same horizontal speed as in a Taylor column. In fact, the horizontal velocity with
vertical shear transports water particles from one distant region to another and therefore maore

water is subducted.

induction due to the combined effect of the sloping
mixed layer base and the current across it. If each par-
ticle trajectory is determined, Eq. (13) can be expressed
in a simple form as

SinlXp) =

—?[z-, =yt hy = Byl

o ;[_ZI = (14)
T

where ki, and i, are depths of the mixed layer base at
t = 0and ¢t = T, respectively, and z, (=—h,) and z,
are vertical positions of a water particle at t = 0 and ¢
= T, respectively. This subduction rate is useful in eval-
uating the dominant effect on subduction, that is, lateral
induction or vertical displacement.

In the estimation of subduction rate, some particles
experience abrupt changes of potential density, though
deep-water particles, in general, are thought to slowly
change potential density as they move. Close exami-
nation reveals that these changes are due mainly to the
effect of nudging terms. Sparsely distributed nudging
terms generate relatively strong local heating/cooling
and consequently produce such artificial density chang-
es when particles pass over these grids. For estimates
of the subduction rate, therefore, we remove particles
with potential density deviations greater than 0.01 o,
over a I-yr travel time, to effectively exclude irregular
particles.

Based on particle trajectories over several years, we
examine the circulation of the intermediate water in the
Japan Sea. We also estimate its formation rate defined
as the volume of the mixed layer water detrained into
the underlying layer after one year. Qiu and Huang

(1995) used the integrated value of the subduction rate
over the whole subducted area as the formation rate.
Though their study made significant contribution to the
understanding of subduction processes, its value gives
an approximate estimation because water particles under
consideration are assumed to move within a Taylor col-
umn (Woods 1985). In the actual oceans, this assump-
tion is not always valid. This is particularly so in regions
with a steep slope at the mixed layer base (e.g., a frontal
area) where the vertical shear of horizontal velocities is
significant due to the thermal wind relation (Fig. 9) and
hence the assumption breaks down. In fact, the for-
mation rate estimated by their definition is about two-
thirds of our estimation (described later). The influence
of the nudging terms on the formation rate will be dis-
cussed in section 3.

b. Distribution of the base of the mixed laver

Woods (1985) emphasized a dynamic role of the slope
of the mixed layer base such that the lateral induction
effectively contributes to the subduction rate as well as
the vertical displacement term. Hence, the spatial dis-
tribution of the mixed layer base should be determined
carefully. In many previous studies, the mixed layer base
is defined as the depth at which potential density differs
from the surface value by 0,125 o, (Marshall et al. 1993;
Qiu and Huang 1995) or 0L05 e, (Williams et al. 1995).
However, as discussed by Levitus (1982), such a defi-
nition has some problems for our experimental domain,
which includes both subtropical and subpolar regions.
If density difference is selected for the subtropical (sub-
polar) region, the mixed layer depth in the subpolar
(subtropical) region becomes much shallower (deeper)
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Figure 4. Horizontal sections (z = —300 m) of tracer concentration (shaded areas) and horizontal velocity

vector (arrows) on (a) day 12 and (b) day 15.

to the neutral state of symmetric stability. Therefore, slant-
wise convection can be considered to be occurring or have
occurred in this region.

It is noteworthy that these characteristics, including the

Density Front

Vertical Velocity (x1 D'st'1)

Figure 5. Horizontal section (z = —133 m) of vertical ve-
locity (shaded areas) and density (solid lines) around the
strong frontal downdraft on day 12. Contour interval is
2x 102 kg m™>. Thick arrow points to the reverse comma-
shaped density front. Dotted line shows the position of the
meridional section shown in Figure 6.

inequality between downdraft and updraft areas in the baro-
clinic region, are commonly observed in the vicinity of the
strong updraft generated along an intense warm front in
the atmospheric extratropical cyclone [e.g., Emanuel, 1988,
Shapiro and Keyser, 1990]. Thus the strong frontal down-
draft here is the oceanic counterpart and is induced by a
frontogenetic process originating from baroclinic instabil-
ity rather than by upright convection. However, the strong
frontal downdraft is 100 times stronger and 10 times nar-
rower than the downdraft due to pure baroclinic instability
[e.g., Spall, 1995]. Thus the strong frontal downdraft ob-
served in this study is greatly affected by upright (and slant-
wise) convection(s).

4. Comparison With Pure Baroclinic
Instability and Pure Convection

In the above experiment (hereafter simply called REF
(reference) experiment) the combined effects of baroclinic
instability and upright (and slantwise) convection(s) are ex-
pected to be significant. To identify them, characteristics of
pure baroclinic instability and pure upright/slantwise con-
vection are examined and compared with REF.

For this purpose, we first examine Kinetic energy evolu-
tions of baroclinic wave and convection in REF. As seen in
Figure 2, there are two separable horizontal scales of mo-
tion, one > 5 km, related to the baroclinic wave, and one
~ 1 km, related to the upright/slantwise convection and the
strong frontal downdraft. This feature is clearly seen in the
power spectra of vertical velocity %(WLWH) on the horizon-
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Plate 1.

in the Lombok Strait [Wyrtki, 1961] (Figure 20) that cannot be
attributed to rainfall and evaporation (not shown here).

Plate 1h shows the distribution of particles on day 730. In the
western Indonesian seas (e.g., the Makassar Strait), only NP
particles (red) have entered even after 2 years of tracking. In
contrast, the water in the eastern Indonesian seas (e.g., the
Banda Sea) has complicated sources. Particles enter from the
North Pacific (24 red particles), the South Pacific (63 green
particles), and the Indian Ocean (13 blue particles). Moreover,
these particles are considerably mixed by the eddylike circula-
tion in the Banda Sea (Figure 18) and by the seasonally fluc-
tuating currents in the eastern Indonesian seas. Based on re-
sults of a water mass analysis, Ffield and Gordon [1992]
concluded that the western Indonesian waters originate almost
entirely in the North Pacific and that a small amount of South
Pacific water seems to be present in the eastern Indonesian
seas. The results of our particle tracking not only support a
North Pacific origin for the western Indonesian waters but also
indicate that the reason for a small presence of South Pacific
water in the eastern seas is due to the intense seasonal flow
reversal there leading to small net transport (southward) and
hence a long residence time for South Pacific waler.

Plate 2 shows the sequence of the horizontal distributions of
particles deployed at 300-m depth. Selected particle trajecto-
ries from January to March in boreal winter and from July to
September in boreal summer are given in Figure 21. Unlike in
the upper layer, the effective supply of MC water to the west-

MIYAMA ET AL.: SEASONAL TRANSPORT VARIATIONS IN INDONESIAN SEAS

day=

90 100 110 120 130 140
(continued)

ern route at this depth occurs mainly in boreal winter in asso-
ciation with the strong link during this season between the MC
and the current through the Makassar Strait. However, as the
EUC begins to strengthen from boreal spring, NP particles of
the MC begin to be drawn into the EUC, finally ceasing to
enter the Makassar Strait in boreal summer. This continues
until boreal autumn. Although there is no direct observational
evidence for the connection between the MC and EUC, Tsu-
chiva et al. [1989] showed that the EUC contains waters of
northern-hemisphere origin in its northern portion, which
seems to support our result. The period of the effective supply
of NP particles to the western route at middle depth therefore
is short as compared with that at shallow depth, causing a more
patchlike distribution of the NP particles than at shallow depth
after they leave the MC (e.g., red particles in the Makassar
Strait; Plate 2b). Note that in the period when no NP water is
supplied to the western route, Sulu Sea water (yellow particles)
flows southward through the Makassar Strait at a velocity that
does not differ significantly from that of the preceding
southward inflow of NP water (Plate 2) but with distinct
changes in the origin of the throughflow and the properties
of the water, as suggested by the colors. Bingham and Lukas
[1994] noted that subsurface intrusion of low-salinity North
Pacific Intermediate Water (NPIW) was seen from the Min-
danao coast to Makassar Strait. Wyrtki [1961] also showed
that salinity values in the region from the Celebes Sea to the
Flores Sea vary considerably and extremely low values often
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Figure 1. Simulated MLD distribution in March.

layer depth. Most recently, simulation experiments using
Ocean General Circulation Models (OGCMs) [Ladd and
Thompson, 2001; Hosoda et al., 2001] have emphasized the
importance of the wide spacing between outcrop lines to the
subduction of large volumetric modes (see also Wong and
Johnsen [2003] on the South Pacific ESTMW). However
questions still remain concerning the formation of the mode
water because this depends on low PV water formation and
the generation process responsible for this is still unclear.

[s] In this study, we use an eddy-permitting OGCM
capable of offering greater information on actual water mass
formation and motion than earlier models. In this fashion,
we attempt more realistic simulations of the North Pacific
circulation and place particular emphasis on preconditioning
of the seasonal thermocline in ESTMW formation.

2. Model and Experiments

[¢e] The model used is the OGCM developed at Kyoto
University [e.g., Nakamura et al., 2004]. For a better
reproduction of the physical interplay between the mixed
layer variability and subsequent subduction processes, this
model incorporates a third-order advection scheme for the
tracer equation [Haswmi and Suginohara, 1999], a recent
turbulence closure mixed layer scheme [Noh and Kim,
1999], isopycnal diffusion with baroclinic eddy parameter-
ization [Redi, 1982; Gent and McWilliams, 1990] and a sea
ice model [fkeda, 1989].

[10] The model covers the entire North Pacific Ocean
(see Figure 1) with horizontal resolution of 1/6° zonally and
1/8° meridionally. There are 78 vertical levels, 62 of which
are set in the upper 500 m with a finer resolution spaced from
4 m near the sea surface to 20 m. The initial values of
potential temperature and salinity are taken from the World
Ocean Atlas 1998 Monthly Data compilation (WOA98
[Conkright et al., 1998]), to which simulated values are
restored in layers deeper than 2000 m and at the southern
open boundary. Sea surface fluxes are calculated with the
bulk formula [fkeda, 1989] using the Ocean Model Inter-
comparison Project (OMIP) dataset [Rdske, 2001], although
in the uppermost 4 m, the commonly used flux correction
method is adopted for heat and freshwater fluxes, with a
relaxation time scale longer than 30 days. The model is
forced by these climatological daily data, and is integrated
until an almost steady seasonal state is obtained. Data from
the last year of the simulation are used for the analysis below.

3. Results

[11] Our experiment successfully represents realistic fea-
tures of seasonally-varying circulation and mixed layer

variabilities in the North Pacific. For example, Figure 1
shows the simulated wintertime (March) mixed layer depth
(MLD) distribution. Since the MLD distribution has a
significant impact on the water mass formation process
[Huang and Qiu, 1994], its assessment forms an appropriate
benchmark from which to judge the validity of our simu-
lation result. In Figure 1, the mixed layer deepening is most
pronounced in the Kuroshio Extension region, where it
reaches a maximum depth of 300 m and reflects the
formation of both WSTMW and CSTMW. Another prom-
inent deepening down to 100-150 m depth is found near
(140°W, 30°N) in the Northeast Pacific Basin, which
represents the formation of ESTMW in this study. These
features are in good agreement with observational findings
(WOAO98; HR98). Figure 2 shows the simulated potential
temperature distribution in a vertical cross section between
(160°, 20°N) and (120°W, 38°N) obtained for August. The
data are similar to those shown in Figure 8¢ of HR98. For
example, Figure 2 exhibits a shallow mixed layer of less
than 50 m. Also, a low PV water formed in the previous
winter is found between the seasonal and permanent ther-
moclines (about 80—-150 m depth), with a spatial pattern
that is in good agreement with the data presented in HR98.
These results represent an encouraging validation of our
model.

[12] LTOO has suggested that the local deepening of the
winter mixed layer in the ESTMW formation region arises
from weak stratification in both the seasonal and permanent
thermoclines in the preconditioning phase, of which the
latter is largely attributed to the presence of the mode water
formed previously. To identify the strength of the stratifi-
cation in the seasonal thermocline before winter convection,
we calculate the vertical difference in density between the
sea surface and water of 100 m depth in November
(Figure 3). This density difference is considered to be a
good indicator of the seasonal change in the intensity of
upper layer stratification because, in this region, water at
100 m depth lies below the seasonal pycnocline in summer
and autumn and above it in winter and spring. Figure 3
shows the presence of a local minimum of stability in the
ESTMW formation region. What causes the development of
such a vertical structure in the upper regions of the water
column?

[13] Figure 4 shows the sea surface salinity (SSS) distri-
bution in November. Most noticeable is the presence of a
band-shaped SSS maximum region located at approximately
30°N. Excess evaporation over precipitation is the most
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Figure 2. Simulated potential temperature distribution in
the vertical cross section between (160°W, 20°N) and
(120°W, 38°N) in August, corresponding to Figure 8¢ of
HR98.
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TaBLE 2. Properties of tidally generated internal waves.
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Regime o o 9
Wave type Unsteady lee waves Mixed tidal-lec waves Internal tides
Intrinsic frequency =k —kU(f) + oy *a;
Relative phase velocity =U(n U + ok *alk

is much less than unity. Hence the effect of advection,
which slightly slows down (speeds up) wave compo-
nents propagating upstream (downstream), is too small
to enable these components to superpose (Fig. 2e), and
thus wave amplification never occurs. Therefore, large-
amplitude waves are not formed except in the vicinity
of the critical slope, as is indicated by previous studies.

3) MIXED TIDAL-LEE WAVE REGIME

When kUy/o, ~ 1, the propagation of wave com-
ponents with phase velocities of ¢}, and ¢, are quite
different, making their loci asymmetric. Since the mag-
nitudes of lee-wave [—U(1)] and internal tide (o /k)
constituents are comparable in this range, the difference
between horizontal phase velocities ¢, and ¢, is sig-
nificant, as with internal tides, while these phase ve-
locities vary in time and the advection effect is signif-
icant, as with unsteady lee waves. For this reason, we
separate MTL wave components on the basis of whether
the phase velocity of their internal-tide constituent is in
the same direction as the lee wave constituent, that is,

a,
¢, =cl,=-UH sgn(—U)—f(f—. 4)

o

or in the opposite direction, that is,

= Ch= U+ sgn(+U)—{;£. (5)
We name the waves with phase velocities ¢, and ¢},
“fast” and “slow™ MTL waves, respectively. As is ap-
parent from the definition, fast MTL waves are faster
than both lee-wave and internal-tide constituents,
whereas slow MTL waves propagating upstream (down-
stream) are slower than unsteady lee waves (internal
tides).

In Fig. 2, the components of fast (slow) MTL waves
generated in the former half period of rightward flow
correspond to those with phase speeds ¢, (c;,), and
those in the latter half period to components with ¢,
(¢;,)- The advection effect together with the significant
differences in phase velocity between individual MTL
waves make wave superposition possible in the follow-
ing way, based on consideration of the Froude number.
At the generation time, F, < 1 for individual fast MTL
waves and F; > 1 for individual slow MTL waves prop-
agating upstream. As the basic flow speeds up (slows
down), the F, values for the fast (slow) MTL wave
components before (after) the maximum flow increase

(decrease) toward unity. Thus, a superposition of fast
(slow) MTL wave components generated in the accel-
eration (deceleration) stage before (after) the maximum
flow in effect takes place.

It seems useful to seek the values of kU /o, for which
the propagation of MTL waves becomes similar to that
of internal tides or unsteady lee waves. A situation sim-
ilar to internal tides could be created by a condition
under which slow (fast) MTL waves always move in
the downstream (upstream) direction at their generation
times. This condition requires that the signs of the ab-
solute phase velocities [c; (1) + U(r)] are always same
as those of the intrinsic phase velocities [}, (1,)]. It is
then straightforward to derive that this is satisfied when
kUyfe, < 3 (Lt < 1) for the slow (fast) MTL waves

as confirmed
to unsteady
below is prof
of unsteady
slow and fal

to speeds ©

sinasiva O INtENSE vVertical mixing :

generated by
phase speed
waves. For
alized when
It is note o
generated a 2) Intern al tlde,
phase speed

ameinces] 3) Mixed tidally lee wave
generated by interaction
between barotropic tides and
behavior ol ottom topography

around the g
and simply
advection. T
superposed
by can affe

mation used|

Topographic internal waves :
generation, growth, and
e Dreaking mechanisms leading

1) unsteady lee wave,

frames, PartiCUTarTy WIET RUTT70; — 1, & MI0Ie OCranetT
analysis may be required to clarify this effect.

The above features of MTL waves enable us to un-
derstand the reason why the short wave at the sill break
in the M, case of NA is amplified, since kU,/o; is 2.5,
indicating that this wave is in the MTL wave regime.
Moreover, our theoretical result also enables us to ex-
plain one unexplained numerical result of Lott and Tei-
telbaum (1993h). For the case & = 4.8 in their study,
which roughly corresponds to kU,/o, ~ 4, waves are
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(em?s™') estimated from the calculated fields in the 4th pe-
riod. Contour is drawn at 100 cm?s~L. (a) An example of y-
z sections across the sill in the Urup Strait. (b) Bussol Strait
section shown along the Island Chain, the vertical axis be-
ing potential density. (c) Horizontal distribution in the
isopycnal layer of 26.75~26.8 0,

the harmonic constants of both tidal elevation and cur-
rent field are qualitatively similar to the observed values,
but an increase in horizontal resolution leads to a corre-
sponding improvement in accuracy.

2.2 Diapycnal mixing

As in the vertical 2-dimensional case reported by
Nakamura et al. (2000b), the main cause of mixing can
be attributed to large-amplitude unsteady lee waves, which
are generated around a sill top and propagate away as the

414 T, Nakamura er al.

S pyrdaySdzel

Fig. 4. (a) Potential temperature at the model sea surface (15
m depth} after 25 periods. White circles indicate eddy-like
structures also seen in AVHRR thermal infrared imagery
(Fig. 5). (b) Planctary part of potential vorticity after 25
periods at the model sea surface.

flow reverses. Figure 2 shows the horizontal distribution
of vertical velocity after 4 periods (after an interval of
time corresponding to 4 periods) at 390 m depth, roughly
corresponding to the core density layer of the NPIW. Many
inertial gravity waves are present, indicating that large-
amplitude unsteady lee waves are produced all along the
Kuril Island Chain. Qur examination of the surfaces of
constant phase reveals that large-amplitude internal waves
originate mainly from (1) the bank located in the north-
eastern Pacific region (around x = 700 km, y = 150 km),
(2) the Urup Strait, and (3) sills in the northeastern part
of the island chain.

To estimate the intensity of vertical mixing associ-
ated with the wave processes, we calculate diapycnal dif-
fusivity coefficients, K, following the scaling proposed
by Gregg (1989), which is based on the internal wave
dynamics and observations. In doing so, due to our lim-
ited vertical grid size, a 30-m shear is used instead of the
10-m shear, so that the present calculation provides rough
estimates of the diffusivity coefficients which will be dis-
cussed in Section 4 in addition to the problem concern-
ing the application of Gregg’s formula in this study. The
estimated K, is temporally averaged over the 4th period.
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Figure 10. Kuroshio path variation adopted from the QBOC issued by the Japan Coast Guard. (a) 3-17
March 1993, (b) 1-14 April, (c) 27 April to 19 May, (d) 2—-15 June, () 1-13 July, (f) 2-16 August, (g)
1-13 September, and (h) 29 September to 13 October.

[30] According to QBOC, a small meander generated
southeast of Kyushu reached off the Kii Peninsula in late
February 1993, After passing by the peninsula in early
March (Figure 10a), the meander grew abruptly to a

maximum in amplitude in early May (Figure 10c). Con-
sequently, the Kuroshio meandered between the Kii Pen-
insula to the south of Hachijo-jima Island. This large-
amplitude path state was maintained for about 2 months.
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MASUDA ET AL.: 4 DIMENSIONAL VARIATIONAL DATA ASSIMILATION

Figure 1. Salinity distribution in a vertical cross section
along 180° in December; (a) observation, (b) simulation,
and (c) assimilation. The contour interval is 0.2 psu.

Our estimate is thought to be in basic agreement because the
adjusted data largely range between those of the ECMWF
and the NCEP values. (The discrepancy with the ECMWF
dataset is possibly due to the long-term variability.)

3.3. Flow Fields

[15] Figure 3 shows the distribution of the transport func-
tion integrated above 1000 m depth around the Oyashio-
Kuroshio Extension region. In the simulation, the Kuroshio
markedly overshoots when separating from the coast
of Japan (Figure 3a) as is usually seen in OGCMs of
comparable resolution, leading to an unrealistic retreat of
the Oyashio to the north. In contrast, these deficiencies are
suppressed in the assimilation (Figure 3b) although the
horizontal resolution of our system (1° x 1°) prevents it
from reproducing a perfect western boundary current.
(Note that the mean SSH field is not assimilated.) The
estimated Kuroshio (Oyashio) transport is 42.3 (5.2) Sv for
the annual mean and 2.7 (5.3) Sv for the seasonal
variability. These values are basically consistent with
earlier studies. The meridional overturning estimated in
the Pacific Ocean exhibits the well-known shallow over-
turning in this basin (not shown), consistent with previous
knowledge.

3.4. Heat Transport

[16] Above improvements in our dataset allow us to make
a robust estimate of the meridional oceanic heat transport.
The estimated annual mean northward heat transport has a
peak value of 0.40 PW at 14°N in the northern hemisphere
and —0.88 PW at 13°S in the southern hemisphere, respec-
tively. These maximum values, together with the overall
transport pattern, are quite similar to those obtained in

Figure 2. Annual mean net air-sea heat flux distribution in
the western Pacific Ocean; (a) satellite result produced for
Oct 1992—-Sep 1993, (b) simulation, and (c) assimilation.
The units are Wm 2.

Figure 3. Transport function above 1000 m depth around
Japan; (a) simulation and (b) assimilation. The contour
interval is 5.0 Sv.

previous studies [e.g., Macdonald and Wunsch, 1996]
although the estimates still range widely (O(107"PW:
e.g., Roemmich, 2001).

[17] However, the recent report by Roemmich [2001]
indicates larger heat transport (0.77PW at a subtropical
section) based on high resolution XBT/XCTD transects. A
close examination shows that the main cause of this large
discrepancy comes from differences in Ekman transport.
This implies that these differences may arise mainly from
interannual variability in the wind field. Actually, their
estimate is made by using a dataset from 1993 to 1998
while the result presented here is based on climatological
data.

4. Advantages of the 4D-VAR Method
4.1. Sensitivity Experiment

[18] The estimate of the adjoint solution enables us to
detect the sensitivity to fluctuations of the model variables.
This is a powerful advantage which facilitates the identifi-
cation of the water mass pathways and the construction of
an adaptive observational system for the improvement of
forecasting [e.g., Palmer et al., 1998]. Here, an application
of a sensitivity experiment to the NPIW pathway is per-
formed in which we investigate the sensitivity to an artificial
cost given in the NPIW region. The distribution of adjoint
variables (Figure 4) implies that, over a roughly 6 year
period, the origin of NPIW can be traced back to the
Okhotsk Sea and the Bering Sea in the subarctic region
and to the subtropical Kuroshio region. These results are in
broad agreement with recent studies [e.g., Yasuda, 1997].

4.2. Difference Between the 4D-VAR and Nudging
Approaches

[19] As another confirmation of the superiority of our
4D-VAR approach, we compare our results directly with
those obtained by the commonly used nudging method with
the same observational data (temperature and salinity fields,
and SSH anomaly data). In the nudging approach, artificial
source/sink terms (nudging terms) are added to both the
temperature and salinity equations in order to restore the
model variables to observed values, using the relaxation
time scale of 55(10) x sind days for temperature and
salinity fields (SSH anomaly field) where ¢ is latitude
[Fujio and Imasato, 1991]. Figure 5a shows the spatial
distribution of the magnitude of the nudging term in the
case of salinity. The values are conspicuous in the Oyashio-
Kuroshio Extension region where a salinity minimum
structure characterizing the NPIW is generally formed
[Yasuda, 1997]). The typical term balance of the salinity
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