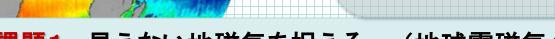

前期課題演習DB (火曜日3·4限、4単位)

流体地球圏の科学


流体地球圏の現象

太陽惑星系電磁気 大気 海洋•陸水

手法・考え方

計測 データ解析 数値計算

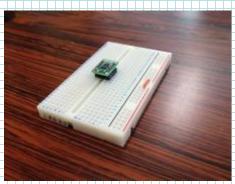
課題1:見えない地磁気を捉える (地球電磁気×計測)

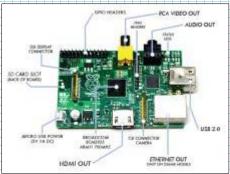
課題2:気候の仕組みを観測データから知る (大気×データ解析)

課題3:海の流れを計算機で見る (海洋・陸水×数値計算)

補課題:計算機とプログラミング

課題1(地球電磁気×計測)


見えない地磁気を捉える


目的:

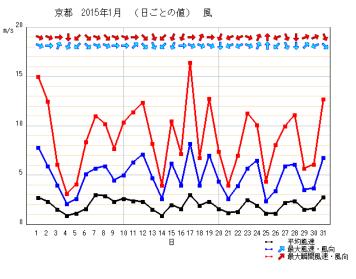
- 地球の磁場(地磁気)について理解する.
- 電子コンパスデバイスを用いて、自然現象の観測手法を習得する。

内容(例):

- 計測装置の仕組みとその取り扱いの習得
- ハードウェアとソフトウェア連携の実習
- 地磁気の方向の野外計測の実施
- 計測データの整理、地磁気方向の算出
- ・レポート

課題2(大気×データ解析)

気候の仕組みを観測データから知る

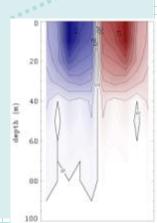

目的:

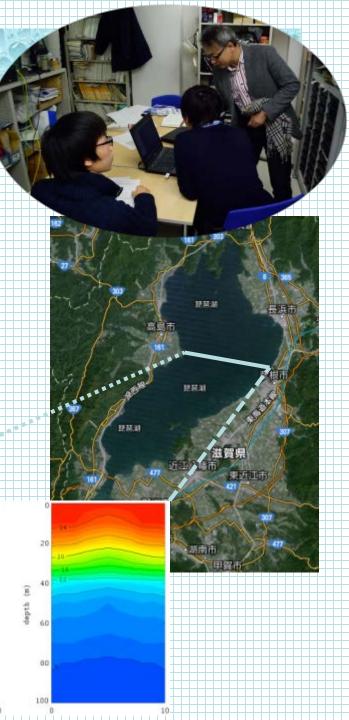
- •気象・気候現象を理解する.
- ・観測データの解析(統計処理)や 作図の手法を習得する.

内容(例):

- •アメダスデータを用いて海陸風の 分布を調べる.
- 気象ゾンデのデータを用いて日本 上空の風分布を調べる.
- ・レーダーデータを用いて台風に伴 う雨や風の変化を調べる.
- * 小グループに分かれ, それぞれ 異なるデータを扱う.

課題3(海洋×数値計算)


海の流れを計算機で見る


目的:

- •海水や湖水の運動の力学バランスを 理解する.
- ・数値シミュレーションを通して数値計算 の手法を習得する.

内容(例):

- ・琵琶湖の水温・塩分データから地衡流 を計算する.
- 拡散方程式(熱伝導方程式)を数値的に解く
- * 両内容とも実施

補課題

計算機とプログラミング

対象者:

計算地球物理学・同演習の未履修者

目的:

課題演習DBの受講に最低限必要な計算機リテラシー教育

内容:

- ・Unixの基礎
- •Fortran90プログラミングの基礎
- gnuplot (作図ソフト)の使い方の基礎

後期課題演習DD(火曜日3·4限、4単位)

流体地球圏の科学

2019年度テーマ(2020年度については6月頃掲示)

太陽惑星系電磁気

- •惑星内部を電磁場で見る
- ・地球と火星の超高層プラズマを探る

大気

- •気象学総合演習
- •雨の科学

海洋

- •海洋力学演習
- ・地球の南北熱エネルギー輸送において 海洋の担う役割を評価する

課題研究 T1(電磁気圏)

地球惑星科学専攻基幹講座

太陽惑星系電磁気学講座 電車本人学 SPEL Salar Planetary 1,2回生向け 最近のトピック ▶ 地球物理学教室 ▶ 地球惑星科学専攻 > 京都大学理学研究科 2014年11月13日 穂積が第136回地 2014年11月5日 大陽県星系開研覧 2014年10月6日 教会他の第文が

地球惑星科学専攻協力講座

田口 聡、齊藤 昭則原田裕己

松岡彩子、藤 浩明

研究分野のイメージ(movie)

研究テーマの方向性

✓プラズマの実験場としての地球・惑星・太陽系

✓ 地球システム内でのプラズマ・電磁場の役割(大気 圏との結合)

✓ 惑星・月におけるプラズマ・電磁場探査

✓宇宙天気の基礎研究・宇宙空間利用の支援

教員・院生の研究内容や 研究室について

Kyoto SPELで検索

Kyoto WDCで検索

質問などは斉藤まで

saitoua@kugi.kyoto-u.ac.jp

流体系(大気圏・水圏分野)

- 構成メンバー
- 課題演習DD(3回生後期)の課題
- 課題研究T2(4回生)配属の研究室

大気圈·水圈分野

研究室

- 気象学
- 物理気候学
- 海洋物理学
- 陸水学

スタッフ

石岡·坂崎

向川・重

秋友・吉川・根田

大沢·柴田

課題演習DD(大気圏・水圏分野)の課題: 2019年度

題名	担当教員	前提	定員
雨の科学	重尚一 大沢信二(地球熱学研究施設)	ある程度のプログラミング 経験または興味	4名
海洋力学演習	吉川裕	計算地球物理学で行う程 度のFortranの基礎知識	4名
地球の南北熱エ ネルギー輸送に おいて海洋の担う 役割を評価する	根田昌典	課題演習DBの履修	4名
気象学総合演習	石岡圭一 坂崎貴俊 堀口光章(防災研究所)	課題演習DB, 計算地球物 理学・同演習, 地球連続体 力学など	5名

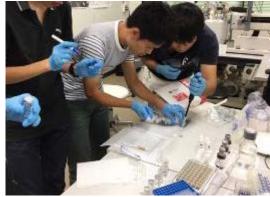
雨の科学

担当:重尚一(気候)・大沢信二(陸水)

概要:

雨滴の粒径分布や同位体 比が雨の事例によって, ど のように変化するのかを調 べる. また, 関連する英語 文献を読んでいく.

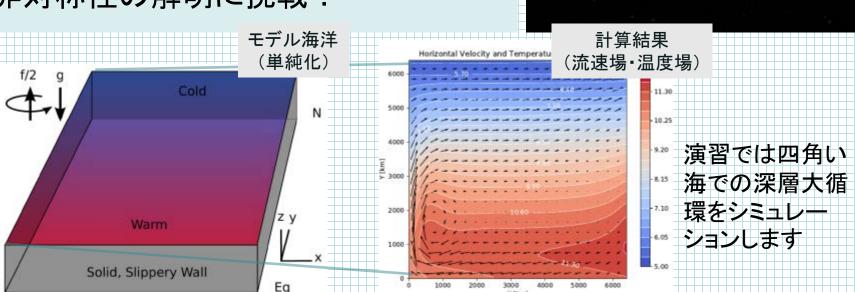
特記事項:


夏季の雨を観測するため、 夏季休暇中に理1号館屋 上での観測を実施する. 観 測日程は履修者決定後に 相談して決める.

理1号館屋上で観測された 雨滴粒径分布の解析

雨水の安定水同位体比 (H₂¹⁶O, HD¹⁶O, H₂¹⁸O)の観測・分析

課題演習DD(海洋×数値計算)


海洋力学演習

目的:

- •海洋力学の基礎の習得
- 数値計算手法の習得

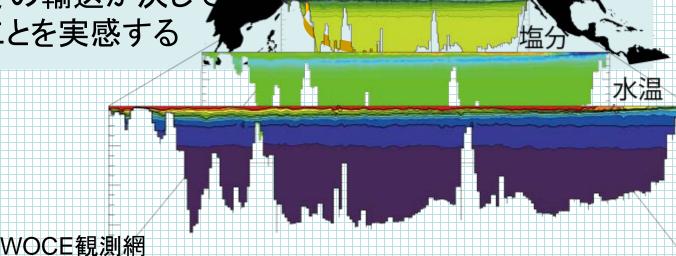
内容(例):

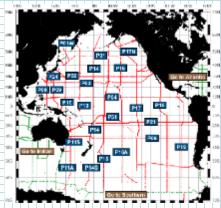
海洋深層大循環の数値実験 非対称性の解明に挑戦!

課題演習DD(海洋×データ解析) 地球の南北熱エネルギー輸送において 海洋の担う役割を評価する

目的:

- •観測データの取り扱いの基礎を学ぶ
- 論文を読んで解析に応用することを学ぶ


内容:


- ・地衡流計算等によって海洋の 熱輸送を評価する
- 海水の分布とその輸送が決して 一様ではないことを実感する

気象庁HPより

密度

気象学総合演習

担当:石岡•坂崎•堀口(防災研)

テーマ:

観測・データ解析・数値実験のという3つの手法に触れることにより、気象学研究の基礎を身につける。 (各テーマ毎、4週または5週ずつ実施)

具体的内容(2019年度の場合):

超音波風速計を用いた地面付近の大気乱流観測 グローバルデータを用いた北極振動現象の解析 スペクトル法という手法を用いた流体数値計算の実習

気象学分野

石岡・坂崎グループ

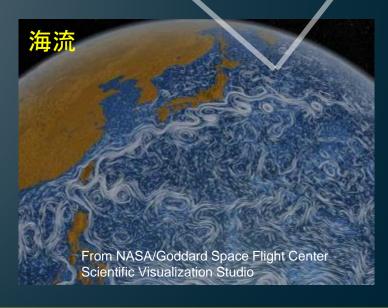
- ●特色:
 地球大気,惑星大気で生じている様々な現象の根源を 力学的に深く理解することを目指している.
- ●得意としている分野:
 成層圏-対流圏系の気象・気候変動, プラネタリー波・重力波, 流れの安定性, 渦の力学, 乱流からのパターン形成, 数値計算法開発, 大気の予測可能性, 潮汐波・自由振動等.

物理気候学分野

スタッフ:向川・重

- 研究室の特色
 - 気候形成や気候変動の問題を念頭に、気候の様々な側面を多方面から理解するための研究
 - ・キーワード
 - 対流圏、非断熱過程
 - 数値モデル(開発と利用)、衛星リモートセンシング
 - 降水の時空間変化、降水と地形、重力波と対流、雲と波動
 - ブロッキング、異常気象、予測可能性
 - 惑星規模波、中高緯度での成層圏ー対流圏結合

海洋物理学分野


秋友和典、吉川裕、根田昌典

対象:海洋をはじめとする 水圏地球に生起する現象の物理 (大気海洋相互作用も)

手法:数值実験、観測、資料解析

特色: 10m規模の風波から 全球規模の海流(大循環)まで

陸水学分野

大沢・柴田

地熱流体論研究分野@地球熱学研究施設(別府)

●目的:

地下水、温泉水、湖水、河川水といった様々な陸水について、多角的な視点から理解する。

●特色:

野外調査と試料分析に基づいた地球物理的、地球化学的な手法を用いて、陸水の起源や水循環過程、付随現象の発現理由、地球環境や地学現象との関係を解き明かす。

詳しくは、地球熱学研究施設のHPを見てください。 http://www.vgs.kyoto-u.ac.jp/japanese/j-index.html

2019年度T2発表会

- 2月27日(木) 14:00-
- ・理学1号館563号室